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A GAS-KINETIC METHOD FOR HYPERBOLIC-ELLIPTIC EQUATIONS
AND ITS APPLICATION IN TWO-PHASE FLUID FLOW

KUN XU∗

Abstract. A gas-kinetic method for the hyperbolic-elliptic equations is presented in this paper. In the
mixed type system, the co-existence and the phase transition between liquid and gas are described by the
van der Waals-type equation of state (EOS). Due to the unstable mechanism for a fluid in the elliptic region,
interface between the liquid and gas can be kept sharp through the condensation and evaporation process
to remove the “averaged” numerical fluid away from the elliptic region, and the interface thickness depends
on the numerical diffusion and stiffness of the phase change. A few examples are presented in this paper for
both phase transition and multifluid interface problems.
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1. Introduction. The study of the liquid-gas phase transition and the interface movement have both
theoretical and practical interesting. The macroscopic governing equations for this phenomena are the mixed
hyperbolic elliptic system, where the van der Waals-type equation of state is usually used. Many numerical
schemes have been proposed to solve the mixed type system, and the intensive investigation for the possible
Riemann solver of the mixed type equations is still undergoing [24, 23, 6, 22, 5, 12, 14, 8]. Many criteria, such
as viscosity capillarity and entropy rate admissibility conditions, have been well recognized in the capturing
of realizable solutions.

Physically, the van der Waals model can be rigorously derived from statistical mechanics, and the
coexistence region of liquid and gas can be well predicted from the Maxwell construction. The particle
interaction with nearby repulsion and long ranged attraction can naturally give the phase transition and
surface tension properties [16, 7]. Based on the particle interaction pictures, many Lattice Boltzmann schemes
have been developed, see [20, 21, 26, 9, 17, 3] and refences therein, and the particle interaction mechanism is
used to capture both multifluid interface and phase transition process. Recently, combining the macroscopic
van der Waals equation of state (EOS) and the mesoscopic Lattice Boltzmann method, He et. al. developed
an interesting scheme for the capturing of liquid and gas interface and they successfully applied the scheme
to the study of the Rayleigh-Taylor instability [10]. However, the scheme in [10] only applies the van der
Waals EOS to the index function and it does not capture the liquid and gas phase change. Also, the densities
of the liquid and gas in [10] are artificially assigned which may not be consistent with the values from the
van der Waals EOS and the Maxwell construction. Based on different interface sharpening mechanism, such
as the reinitialization in the level set method, many interface capturing schemes have been developed in the
past years, see [25, 13, 15] and references therein.

In this paper, we are going to develop a gas-kinetic BGK-type scheme for the hyperbolic elliptic system,
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where the continuum and momentum equations are solved directly. The phase transition and the motion of
multifluid interface are accurately captured by the current method.

2. Governing Equations and Interface Capturing Mechanism. In the one-dimensional case, the
governing equations for the isothermal hyperbolic-elliptic system are(

ρ

ρU

)
t

+
(

ρU

ρU2 + p

)
x

= 0(2.1)

where ρ and U are the density and velocity. For the multiphase flow and phase transition problems, the
relation between the pressure p and the density proposed by van der Waals is quite satisfactory. The equation
of state is

p =
ρRT

1− bρ
− aρ2,

where R is the gas constant, T is the temperature, and a and b are constants. The critical temperature for
the separation of liquid and gas is

Tc =
8a

27bR
.

When the fluid temperature is below the above critical value, phase segregation occurs. In this paper, we
are going to study the fluids with fixed values a = 0.9, b = 0.25 and RT = 1.0. The corresponding critical
temperature in this case is Tc = 1.0666/R. Since RT is less than TcR, the phase transition can appear in
the current fluid system. The illustrative plot of the van der Waals EOS is shown in Fig.(5.1). The densities
of liquid ρl and gas ρg can be obtained from Maxwell construction (equal area construction). The values in
the plot are 1/ρl = 0.494273, 1/ρg = 1.405065, 1/ρα = 0.574912, 1/ρβ = 1.036251. The fluid density ρ can
be catalogued in the following regions:

1
ρ

=




1
ρ <

1
ρl
, liquid phase

1
ρl
< 1

ρ <
1

ρα
, metastable

1
ρα

< 1
ρ <

1
ρβ
, unstable elliptic region (mixture)

1
ρβ
< 1

ρ <
1
ρg
, metastable

1
ρg
< 1

ρ , gas phase

(2.2)

When the fluid density takes on values in the elliptical region, due to the negative slope of ∂p/∂ρ,
fluid instabilities will be amplified. The fluid mixture in the elliptic region will evaporate to the gas state
or condense to the liquid state. So, similar to the shock steepening mechanism, the van der Waals EOS
has an intrinsic physical mechanism to separate different phases at the multifluid interface and sharpen the
interface. This is the main reason that we can observe the sharp liquid gas interface in the real world. This
property can also be used to develop an interface capturing scheme.

Numerically, due to the cell size limitation and averaging process [28], the liquid and gas will be artificially
mixed to form a numerical mixture with averaged density. If there is no any steepening mechanism at the
interface, such as at the contact discontinuity wave of the compressible Euler equations, the thickness of
the interface will grow with the square root of evolution time or total number of time steps. The real
sharp interface between different fluids is enforced through the van der Waals-type EOS or the molecular
interactions. Once this kind of physics is incorporated in a multifluid numerical scheme, the numerically
averaged density in the elliptical region will be condensed to the liquid or evaporated to the gas and the
numerical interface can be kept sharp automatically.
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In order to use the steepening mechanism at a multifluid interface, a scheme must be very accurate in
predicting the liquid and gas densities first. In other words, even though there is no explicit terms about
Maxwell equal area construction in Eq.(2.1), a scheme must have certain intrinsic dissipative mechanism,
such as the implicit viscosity capillarity terms, and be able to pick up the physically correct solutions, such
as the same liquid and gas densities from the Maxwell construction. Then, a numerically averaged density
can be most likely located in the elliptic region. On the other hand, the numerical diffusion cannot be too
large or it will overtake the physical steepening mechanism in the elliptic region.

Currently, it seems difficult for any high-order scheme to predict a very accurate density jump at a
multifluid interface. It is not surprising that many existing high-order schemes will give liquid and gas
densities which probably depend on the interpolation limiters, CFL number, the cell size, even the Runge-
Kutta time stepping techniques. In the current paper, we present a gas-kinetic scheme to solve Eq.(2.1).
Due to the intrinsic diffusion and dissipative mechanism in the kinetic approach [28], the Maxwell equal area
rule is implicitly achieved. The numerically obtained equilibrium densities of liquid and gas are very close to
the theoretical values. At the same time, the phase boundary can be kept within two or three grid points.
With this property, the kinetic method is used to simulate the evolution of multifluid interface, such as the
merging of two liquid droplets.

3. Gas-Kinetic Scheme for the Hyperbolic-Elliptic Equations. The BGK model has the stan-
dard form

ft + ufx =
g − f

τ
,(3.1)

where f is the gas distribution function, g is the equilibrium state, and τ is the particle collision time. Both
f and g are functions of space x, time t, and particle velocity u.

In order to recover Eq.(2.1) from Eq.(3.1), the equilibrium state g can be constructed as

g = ρ(
λ

π
)

1
2 e−λ(u−U)2 ,

where λ is defined by

λ =
ρ

2p

=
1
2

1− bρ

RT − aρ+ abρ2
(3.2)

= Λ(ρ),

and the variation of λ is related to the density changes

dλ =
1
2
ab2ρ2 − 2abρ+ (a− bRT )

(RT − aρ+ abρ2)2
dρ

= D(ρ)dρ,(3.3)

where the functions Λ and D are well defined in the above equations. In the current paper, a fixed value
RT = 1.0 is used.

Due to the conservation properties in particle collision, f and g satisfy the compatibility condition∫
(f − g)ψαdu = 0 for ψα = (1, u)T(3.4)

at any point in space and time.
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The solution for the BGK model (3.1) is

f(xj+1/2, t, u) =
1
τ

∫ t

0

g(x′, t′, u)e−(t−t′)/τdt′ + e−t/τf0(xj+1/2 − ut),(3.5)

where xj+1/2 is the cell interface and x′ = xj+1/2−u(t−t′) is the particle trajectory. There are two unknowns
in the above equation. One is the initial gas distribution function f0 at time t = 0, and the other is g in
both space and time locally around (xj+1/2, t = 0). Similar to the BGK-type schemes for the Euler and
Navier-Stokes equations [28], the numerical scheme based on Eq.(3.5), along with the compatibility condition
(3.4), is described as follows:
Step(1): Use MUSCL technique [27] to interpolate the conservative variables W = (ρ, ρU)T , and obtain
the reconstructed initial data inside each cell

Wj(x) = Wj(xj) +
Wj(xj+1/2)−Wj(xj−1/2)

xj+1/2 − xj−1/2
(x − xj) for x ∈ [xj−1/2, xj+1/2],(3.6)

whereWj(xj) is the cell averaged value, andWj(xj−1/2) andWj(xj+1/2) are the values at the cell boundaries.
A nonlinear limiter, such as van Leer’s limiter, is used in the current paper to get the cell boundary values.
From the reconstructed data, the values ρ, U and their corresponding slopes, e.g. ∂ρ/∂x and ∂U/∂x, are
known everywhere. Therefore, the variation λ can be found subsequently through Eq.(3.3), such as ∂λ/∂x =
D(ρ)∂ρ/∂x.
Step(2): Based on the reconstructed data in Step(1), around each cell interface xj+1/2, construct the initial
gas distribution function f0,

f0(x) =

{
gl

(
1 + al(x− xj+1/2)

)
, x ≤ xj+1/2

gr
(
1 + ar(x− xj+1/2)

)
, x ≥ xj+1/2,

(3.7)

where the states gl and gr are the Maxwellian distribution functions defined in terms of the conservative
variables at a cell interface,

gl = gl(Wj(xj+1/2)) and gr = gr(Wj+1(xj+1/2)).(3.8)

For example, with the distribution

gl = ρl(
λl

π
)

1
2

e−λl(u−Ul)2 ,(3.9)

all coefficients in gl can be obtained as


ρl

U l

λl


 =




ρj(xj+1/2)
ρjUj(xj+1/2)/ρj(xj+1/2)

Λ(ρl)


 .(3.10)

Similar formulation can be found for gr. The coefficients al,r in Eq.(3.7) have the forms

al,r = ml,r
1 +ml,r

2 u+ml,r
3 u2,

which are derived from the Taylor expansion of a Maxwellian distribution function. The coefficients (ml,r
1 , ml,r

2 , ml,r
3 )

depend on (ρl, U l), (ρr, U r) and their corresponding slopes, i.e.(
∂ρl

∂x
,
∂U l

∂x
,
∂λl

∂x

)
and

(
∂ρr

∂x
,
∂U r

∂x
,
∂λr

∂x

)
.
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The detail relations are

ml,r
1 =

[
1
ρ

(
∂ρ

∂x

)
+ (

1
2λ

− U2)
∂λ

∂x
− 2λU

∂U

∂x

]l,r

,

ml,r
2 =

[
2U

∂λ

∂x
+ 2λ

∂U

∂x

]l,r

,(3.11)

ml,r
3 =

[
−∂λ
∂x

]l,r

.

Therefore, with the initially reconstructed data in Step (1), f0(x) in Eq.(3.7) are totally determined. For
the sake of simplicity, we assume xj+1/2 = 0 in the rest of this paper.
Step(3): The equilibrium state g is constructed as

g = g0
(
1 + (1−H[x])ālx+ H[x]ārx+ Āt

)
,(3.12)

where H[x] is the Heaviside function and g0 is the state located at (x = 0, t = 0),

g0 = ρ0(
λ0

π
)

1
2 e−λ0(u−U0)2 .(3.13)

The coefficients āl, ār, and Ā in Eq.(3.12) have the forms

āl,r = m̄l,r
1 + m̄l,r

2 u+ m̄l,r
3 u2,

Ā = Ā1 + Ā2u+ Ā3u
2,(3.14)

which have the same functional dependence on (∂ρ/∂x, ∂U/∂x) and (∂ρ/∂t, ∂U/∂t), as shown in Eq.(3.12).
Taking both limits (x→ 0) and (t→ 0) in Eq.(3.5) and (3.12), and applying the compatibility condition

at (x = 0, t = 0), we can get macroscopic quantities W0,

W0 =
(

ρ0

ρ0U0

)
=

∫
g0ψαdu =

∫ (
glH[u] + gr(1 −H[u])

)
ψαdu,(3.15)

where gl and gr are known from Step (2). Here W0 is the “averaged” flow variables at the cell interface,
from which g0 can be determined. Then, connecting W0 to the cell centered values Wj(xj) and Wj+1(xj+1),
we can get the slopes for mass and momentum distributions on both sides(

∂ρl
0

∂x
,
∂(ρ0U0)l

∂x

)T

=
W0 −Wj(xj)
xj+1/2 − xj

for x ≤ 0,

(
∂ρr

0

∂x
,
∂(ρ0U0)r

∂x

)T

=
Wj+1(xj+1)−W0

xj+1 − xj+1/2
for x ≥ 0,(3.16)

from which ∂ρ/∂x, ∂U/∂x, ∂λ/∂x can be obtained. Therefore, (āl, ār) can be determined in a similar way
as that in Eq.(3.12). The only unknown in Eq.(3.12) is Ā, which is related to ∂ρ0/∂t, ∂U0/∂t and ∂λ0/∂t

(= D(ρ0)∂ρ0/∂t) through the relations

Ā1 =
[

1
ρ0

(
∂ρ0

∂t

)
+ (

1
2λ0

− U2
0 )
∂λ0

∂t
− 2λ0U0

∂U0

∂t

]l,r

,

Ā2 =
[
2U0

∂λ0

∂x
+ 2λ0

∂U0

∂t

]l,r

,(3.17)

Ā3 =
[
−∂λ0

∂t

]l,r

.
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To this point, we need to evaluate ∂ρ0/∂t and ∂(ρU)0/∂t.
Step(4): Substituting Eqs.(3.12) and (3.7) into the integral solution (3.5), we obtain the distribution func-
tion f at x = 0,

f(0, t, u) = γ0g0 + γ1

(
ālH[u] + ār(1 −H[u])

)
ug0

+γ2Āg0 + γ3

(
(1− utal)H[u]gl + (1− utar)(1 −H[u])gr

)
,(3.18)

where

γ0 = 1− e−t/τ ,

γ1 = τ(−1 + e−t/τ ) + te−t/τ ,

γ2 = τ(t/τ − 1 + e−t/τ ),

γ3 = e−t/τ .

The only unknown in Eq.(3.18) is Ā, which is a function of (∂ρ0/∂t, ∂U0/∂t), see Eq.(3.18). Since the
compatibility condition must be satisfied everywhere in space and time, it can be integrated in a whole CFL
time step ∆T at x = 0

∫ ∆T

0

∫
(f(0, t, u)− g(0, t, u))ψαdtdu = 0,(3.19)

from which

(Γ5
∂ρ0

∂t
,Γ5

∂(ρU)0
∂t

)T =
∫ [−Γ3g0 + Γ1u

(
ālH[u] + ār(1−H[u])

)
g0

+ Γ3

(
H[u]gl + (1−H[u])gr

)
(3.20)

+ Γ4u
(
alH[u]gl + ar(1−H[u])gr

)]
ψαdu

are obtained. All terms on the right hand side of the above equation are known, and

Γ0 = ∆T − τ(1 − e−∆T/τ),

Γ1 = τ
(
−∆T + 2τ(1 − e−∆T/τ )−∆Te−∆T/τ

)
,

Γ2 =
1
2
∆T 2 − τ∆T + τ2(1− e−∆T/τ ),

Γ3 = τ(1 − e−∆T/τ ),

Γ4 = −τ
(
−∆Te−∆T/τ + τ(1 − e−∆T/τ )

)
,

Γ5 = τ
(
∆T − τ(1 − e−∆T/τ )

)
.

Thus, (∂ρ0/∂t, ∂U0/∂t), as wel as ∂λ0/∂t, can be obtained from Eq.(3.21).
Step(5): The time-dependent numerical fluxes of mass and momentum across the cell interface is

FW,j+1/2 =
(
Fρ(t)
FρU (t)

)
j+1/2

=
∫
uψαfj+1/2(0, t, u)du,(3.21)

where f is given in Eq.(3.18). The update of flow variables inside each cell becomes

Wn+1
j = Wn

j +
1

∆x

∫ ∆t

0

(FW,j−1/2 − FW,j+1/2)dt.
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4. Numerical Examples. In this section, we are going to present a few test cases in both 1D and 2D.
The van Leer limiter is used for interpolations of ρ and ρU at the beginning of each time step. The time step
∆T is determined by the Courant-Friedrichs-Levy condition with CFL number =0.25. The collision time τ
is defined as

τ = C1∆T + C2∆T
|pl − pr|
pl + pr

,(4.1)

where pl = Λ(ρl), pr = Λ(ρr), and C1 = 0.05, C2 = 2.0 are fixed in all calculations.

4.1. 1D Shock Tube Cases. In the following, four shock tube cases presented in Shu’s paper [22] are
tested using the current kinetic scheme.
CASE(1)

The initial condition for this case is the exact liquid and gas densities from the Maxwell construction,

(1/ρL = 0.494273, UL = 1.0)|x<0.5 and (1/ρR = 1.405065, UR = 1.0)|x≥0.5.

The cell size used is ∆x = 1/200. This test case is mainly to see if the scheme can keep the admissible jump
from the Maxwell construction. The numerical result (solid line and circles) for the density distribution is
shown in Fig.(5.2), where the dashed and dotted lines represent 1/ρl, 1/ρg, 1/ρα and 1/ρβ respectively.
CASE(2)

The second case has the following initial condition,

(1/ρL = 0.54, UL = 1.0) and (1/ρR = 1.8517, UR = 1.0).

This initial jump satisfies the Rankine-Hugoniot condition, but does not satisfy the physical principles,
such as viscosity capillarity condition. With the cell size ∆x = 1/200, our simulation results are shown in
Fig.(5.3), where the solid line is obtained with a much refined mesh ∆x = 1/2000. This case clearly shows
that the current scheme can pick up the physically admissible solution. There is no oscillations at the liquid
phase around the interface. Our results are favorable in comparison with the ENO-type method [22].
CASE(3)

This case has the initial condition

(1/ρL = 0.45, UL = 1.0) and (1/ρR = 2.0, UR = 2.0).

Fig.(5.4) shows the results with cell sizes ∆x = 1/200 and ∆x = 1/2000. From this figure, we can also
observe the sharp interface between the liquid and gas phases.
CASE(4)

The initial condition for this case is

(1/ρ, U) = (0.8 + 0.2sin(x), 1− 0.5cos(x)).

The initial density is entirely in the elliptic region. Periodic boundary condition is used. The solutions
with cell size ∆x = 1/400 at different output time are shown in Fig.(5.5). These figures clearly show the
flow instability in the elliptic region and how the densities eventually go to the well defined liquid and gas
densities, even though the Maxwell construction is not explicitly used in the current scheme. For the liquid
and gas phases, the numerical densities obtained are about 1/ρ = (0.49400, 1.40175). The differences between
the numerics and the theoretical values (0.494273, 1.405065) are less than 0.5%. This is a very good case to
test the ability of any high-order scheme to capture the correct density jumps around the phase boundary,
as well as the sharpness of the interface. Our scheme can capture the jump within 2 or 3 cells, as shown in
Fig(5.5d).
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4.2. Liquid-Gas Interfaces in 2D Cases. In 2D cases, in order to capture the movement of a mul-
tifluid interface the inclusion of surface tension and gravity becomes important. In the test case (5), the
gravitational force ρG is implemented in the y-momentum equation for the liquid phase, and the nondimen-
sional magnitude of G is assigned the value 0.25. In the test case (6), an additional body force κρ∇∇2ρ

is added in the momentum equations to recover the surface tension effect [19, 3, 10]. The nondimensional
coefficient κ used in case (6) is equal to 5.0× 10−6.

CASE(5)

This is a dam break problem. Many schemes have been used in this kind of free surface problems.
A short list includes Volume of Fluid (VOF), Boundary Integral Techniques, Front Tracking Method, and
Arbitrary Lagrangian-Eulerian (ALE) method, see [11, 29, 4, 1] and references therein. The cell size used
in our study is ∆x = ∆y = 1/100. The schematic construction for this problem is shown in Fig.(5.6),
where the densities of the liquid and gas are assigned with the values from the Maxwell construction, i.e.
1/ρl = 0.494273 and 1/ρg = 1.405065. The initial velocity of both gas and liquid are zero, and no surface
tension is included in this case. Due to the numerical diffusion, any index function to describe the liquid
and gas interface will get smeared in the Eulerian advection scheme, and the smearing is proportional to the
square root of the number of time steps used. This is basically the main reason for the level set method to use
reinitialization to keep the interface sharp [2]. However, in our case, since the van der Waals EOS is used to
describe the liquid and gas phases, any smeared density at the interface is most likely to locate in the elliptic
region and the flow instability in these region will automatically steepen the interface. More specifically,
the condensation and evaporation process around phase boundary could move the averaged density to the
liquid or gas phases, and this effect compensates the numerical dissipation in the advection scheme. Fig.(5.7)
shows the time evolution of the liquid-gas interface, and the interface thickness keeps two or three mesh size
regardless the time steps used to get the final results. Fig.(5.8) shows the locations of the leading liquid
front. The numerical results are compared with the experimental data in [18]. From this figure, we observe
that the numerical speed is slower than the experimental speed. The reason for the difference is that in the
current calculation the density ratio between liquid and gas is about 2.8, and the experimental data was
obtained for the water and air, and their density ratio is about 800. Therefore, the relative aerodynamical
resistence is much higher in the current study. Fig.(5.7) shows a very interesting phenomena that there is
a bore shock and a rarefaction wave in the liquid phase. This solution is amazingly close to the solution by
solving the shallow water equations. In other words, the current direct numerical simulation in some sense
validates the approximation used in theoretical derivation of shallow water equations.

CASE(6)

This test case is about the collision of two droplets. Similar to the last case, the initial densities of
the liquid and gas phases are assigned with the theoretical values again from the Maxwell construction, i.e.
1/ρl = 0.494273 and 1/ρg = 1.405065. The cell size used in this case is ∆x = ∆y = 1/100. The initial
droplets with radius R = 0.055 are moving toward each other with a velocity magnitude of U = 0.125.
No gravity is included in this case. Fig.(5.9) shows the time evolution of the droplets. The collision and
merging of the droplets can be observed. Due to the steepening mechanism at the fluid interfaces from
the van der Waals EOS, the sharp interface is kept in the time evolution process. Fig.(5.10) shows the
density distribution across the central lines in both the x- and the y-directions of Fig.(5.9i), where the phase
boundaries keep 2 mesh points even though 1600 time steps have passed at that output time.

5. Discussion and Conclusion. In this paper, we have developed a gas-kinetic scheme for the
hyperbolic-elliptic system, where the van der Waals equation of state is used to describe the phase transition.
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At the same time, the instability or sharpening mechanism in the elliptical region is used to capture the fluid
interface. Many test cases validate the current approach.

The current paper is only a first step in the study of multifluid flow by solving the mixed type system.
Hopefully, in the near future we can answer the following questions.

1. If we only need to describe the motion of multifluid interfaces without including phase transition, such
as problems related to incompressible multifluid, we need to find some ways to simplify the van der Waals
EOS in order to get a simple (not simpler) numerical method. But, the property ∂p/∂ρ < 0 has to be kept
so as to get the interface sharpening mechanism.

2. The current approach can be used to capture the interface breaking and merging. Similar to the level
set method, the interface topological changes is easily handled. However, since the equations are basically
describing the phase transition problems, the mass conservation for each individual phase cannot be guar-
anteed in the evolution process. How to improve the mass conservation property for each individual phase
under the current framework is an important question that needs to be addressed.

3. In order to increase the density ratio between the liquid and gas phases, we need to use a more realistic
EOS to cope with that.

The preliminary results presented in this paper are very promising and encouraging. Since there is no
tracking, index function, or special treatment used around the multifluid interfaces, the extension of the
current method to simulate hundreds or even thousands of bubbles (or droplets) becomes possible. Also,
the implementation of interface physics in the capturing of interface movement should be a reasonable and
reliable approach. This kind of scheme may provide a new way to solve many multifluid engineering problems
after its further developement.
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Fig. 5.1. van der Waals Equation of State for RT = 1.0 case.
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Fig. 5.2. Solid line and circles are the distribution of 1/ρ. The dotted lines are densities of 1/ρl and 1/ρg from Maxwell

construction. The region between dashed lines (1/ρα, 1/ρβ) is the elliptic region where the fluid is intrinsically unstable.
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Fig. 5.3. (a) Circles are the simulation results of distribution 1/ρ, which are obtained with the cell size ∆x = 1/200. The

solid line is the result obtained with a much refined mesh ∆x = 1/2000. (b) Distribution of 1/ρ obtained with a refined mesh

∆x = 1/2000.
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Fig. 5.4. Distribution of 1/ρ. Circles are the simulation result obtained with cell size ∆x = 1/200. The solid line is the

result obtained with a much refined mesh ∆x = 1/2000.
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Fig. 5.5. The solid lines are the distributions of 1/ρ at different output times. The mesh size used is ∆x = 1/400. (a)

t=0.0, (b) t=0.1, (c) t=1.0, (d) t=100.0. Circles are added in the plot (d) to show the number of grid points around the

multifluid interfaces.
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Fig. 5.6. Schematic diagram of liquid gas distributions.

12



0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) (b) (c) (d)

Fig. 5.7. Liquid-gas interfaces at different output time. (a) t = 0.0, (b) t
√

G/a = 0.5, (c) t
√

G/a = 1.0, (d) t
√

G/a = 1.5.
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Fig. 5.8. The horizontal axis is t
√

G/a and the vertical axis is x/a, where x is the location of leading liquid front. The

solid line is the time evolution of the leading liquid front. The density ratio between liquid and gas is around 2.8. The circle

is the experimental data in [18], where real water and air with density ratio around 800 were used.
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Fig. 5.9. Time evolution of the collision of two droplets. The output times are (a) t=0, (b) t=0.2, (c) t=0.25, (d) t=0.3,

(e) t=0.40, (f) t=0.60, (g) t=0.80, (h) t=1.20, (i) t=1.60.
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Fig. 5.10. The distribution 1/ρ. (a). along the central line of Fig.(5.9i) in the x-direction, (b). along the central line

of Fig.(5.9i) in the y-direction. Since both the liquid and gas are treated as the compressible flow in the current study, small

density fluctuations appear in the dynamical transport process, especially in the gas phase.
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